THE 29TH INTERNATIONAL CONFERENCE ON ADVANCES IN CRITICAL CARE NEPHROLOGY AKI & CRRRT 2024

MARCH 12-15, 2024 MANCHESTER GRAND HYATT SAN DIEGO, CALIFORNIA

SESSION I (Plenary-1): Organ Dysfunction in the Critically Ill Patient: Emerging Concepts

Hidden in Plain Sight; Chloride in Acute Heart Failure

Amir Kazory, MD, FASN, FAHA Division of Nephrology, Hypertension, and Renal Transplantation University of Florida

Disclosures

Baxter, Inc. – Cardiology Advisory Board Daxor, Inc. - Consultant DCI, Inc. – Directorship Fee Elsevier, Inc. – Editorial Fee Horizon Therapeutics USA, Inc. – Advisory Board NuWellis, Inc. - Scientific Advisory Board Relypsa, Inc. - Consultant W.L. Gore Inc. - Consultant

Observation 1

Hyponatremia and Mortality in HF (MAGGIC)

Hyponatremia: a powerful determinant of mortality in HF regardless of ejection fraction.

[Rosinaru D. Eur J Heart Fail 2012;14:1139]

14,766 patients

Correction of Hyponatremia (EVEREST)

V2RA does not improve outcomes in HF (tolvaptan vs. placebo in ADHF)

Correction of Hyponatremia (EVEREST)

In the hyponatremic subgroup, despite increase in serum sodium, outcomes were not affected by V2RA (tolvaptan).

[Konstam MA. JAMA 2007;297:1319]

Observation 2

Dietary Sodium Restriction

Table 1 Guideline Recommendations for Sodium Intake in Heart Failure							
Guideline and Reference	Year	Sodium Intake Recommendation	Level of Evidence				
Cardiac Society of Australia and New Zealand ⁹	2018	<2 g/d	Not stated				
Canadian Cardiovascular Society ⁸	2017	2-3 g/d	Limited				
Heart Failure Society, India ⁶	2017	<3 g/d	Not stated				
Royal College of Physicians ⁵	2016	Reduce intake for patients with high salt intake	Limited				
Scottish Intercollegiate Guidelines Network ¹¹	2016	Salt intake of < 6 g/d	Not stated				
American College of Cardiology/American Heart Association ⁴	2013	Restriction as reasonable	С				
European Society of Cardiology ⁷	2012	Moderate restriction	Not stated				
American Dietetic Association ¹²	2011	<2 g/d	Fair				
Heart Failure Society of America ¹⁰	2010	2-3 g/d; <2 g/d in severe heart failure	С				

Level of Evidence: C = consensus opinion of experts. Limited population evaluated; Fair = benefits more than harms, but quality of evidence is weak; Limited = more research is required

"Dietary Sodium Restriction":

the most frequent self-care behavior recommended to patients with HF

Sodium Restriction in HF; Persistence of Uncertainty

JAMA Internal Medicine | Review

Reduced Salt Intake for Heart Failure A Systematic Review

Kamal R. Mahtani, PhD; Carl Heneghan, DPhil; Igho Onakpoya, DPhil; Stephanie Tierney, MA, PhD; Jeffrey K. Aronson, DPhil; Nia Roberts, MSc; F. D. Richard Hobbs, FMedSci; David Nunan, MSc, PhD

Table 2. Summary of Changes	in the Clinical Sig	gns and Symptoms of H	leart Failure		
Source	Country	No. of Participants	Difference, Interventio	on vs Control	
Inpatient Studies				All studies: less than	
Aliti et al, ¹⁵ 2013 ^a	Brazil	75	No difference	100 patients	
Velloso et al, ²¹ 1991 ^b	Brazil	32	No difference		
Outpatient Studies				The great majority	
Alvelos et al, ¹⁶ 2004 ^c	Portugal	24	No difference		
Colín-Ramírez et al, ¹⁷ 2004 ^c	Mexico	65	Favors intervention	ala not fina	
Colín-Ramírez et al, ¹⁸ 2015 ^c	Canada	38	No difference	improvement with	
Philipson et al, ¹⁹ 2013 ^c	Sweden	97	Favors intervention	sodium restriction	
Colín-Ramírez et al, ¹⁸ 2015 ^d	Canada	38	No difference	$(2, 2, \alpha/d_{2})$	
Hummel et al, ²² 2017 ^d	United States	66	No difference	(2-3 g/uay)	

Out of >2600 studies

JAMA Intern Med. 2018;178(12):1693-1700. doi:10.1001/jamainternmed.2018.4673

Sodium Restriction May Be Harmful in HF (HART)

Observation 3

Treating ADHF with Hypertonic Saline

58 administrations 40 patients

No increase in O2 requirement or over-correction of serum sodium

[Griffin M.. JACC Heart Fail 2020;8:199]

Treating ADHF with Hypertonic Saline

58 administrations 40 patients

 \uparrow in Urine output and \downarrow in weight

First Studies on Chloride-HF (ADHF-2015)

CENTRAL ILLUSTRATION Chloride in Acute Decompensated Heart Failure: Survival Estimates by Admission Chloride Levels

Tertiles of Admission Chloride – Cleveland Clinic Cohort

2261 person-years of follow up

1318 patients

First Studies on Chloride-HF (ADHF-2015)

Admission chloride levels; possibly a stronger prognostic role than serum sodium levels

Figure 1. Kaplan–Meier estimated of 5-year mortality across chloride quartiles.

6772 person-years

5-year Mortality

Table 2.Cox-Proportional Hazards Models for theAssociation of Chloride and 5-Year Mortality

Model	HR* (95% CI)	<i>P</i> Value
Unadjusted	1.32 (1.22–1.43)	< 0.001
Adjusted Model 1†	1.29 (1.12–1.49)	< 0.001
Adjusted Model 2‡	1.26 (1.03–1.55)	0.027

For every standard deviation (4.1 mEq/L) decrement in Chloride level; 26-29% increase in 5-year mortality risk

[Grodin Circ Heart Fail 2016;9:e002453]

1673 patients

Predicted 5-Year Mortality of Sodium Level with and without Adjustment for Chloride

[Grodin Circ Heart Fail 2016;9:e002453]

Systematic Review and Meta-Analysis

Low serum chloride level is a strong independent predictor of mortality in various phenotypes of HF

[Jain A, Kazory A. Unpublished]

Cardio-Renal Connections of Chloride in HF

Chloride and the Kidney

1

Neurohormonal Activation (renin secretion)

Impact on Targets of Diuretic Therapy (NKCC and NCC)

[Doukky R. JACC Heart Fail. 2016;4:24]

Low Chloride and Neurohormonal Activation

O Renin O Succinate C Gpr91 (Macula densa cell) Renal epithelial cell

[Doukky R. JACC Heart Fail. 2016;4:24]

Intracellular Chloride and Cation-Chloride Cotransporters

Fig. 5. Proposed model for intracellular chloride, WNK3, and SPAK interaction in the control of NKCC2 activity.

Low Intracellular chloride increases NKCC activity in TAL

Low Intracellular chloride increases NCC activity in DCT

[Gimenez I. Curr Opin Nephrol Hypertens 2006;15:517] [Gamba G. Physiol Rev 2005;85:423] [Shekarabi M. Cell Metab 2017;25:285] Hypochloremia and Adverse Outcomes: Association or Causality?

Studying the Effects of Increasing Serum Chloride Levels

Sodium-Free Chloride Supplementation

Pharmacologic Increase in Serum Chloride

Sodium-Free Chloride Supplementation

Lysine Chloride

500 mg capsule or 7 g powder, TID for 3 days while on a low salt (<2 g/day) diet.

[Hanberg JS et al. Circ Heart Fail. 2016;9:e0031802016]

Sodium-Free Chloride Supplementation

The available metrics suggested intravascular depletion after Chloride supplementation

[Hanberg JS et al. Circ Heart Fail. 2016;9:e0031802016]

Pharmacological Increase in Serum Chloride Level - Acetazolamide

Metabolic Acidosis Hyperchloremia Hypokalemia

Acetazolamide in Decompensated Heart Failure with Volume Overload

A Successful Decongestion within 3 Days after Randomization

More patients in the acetazolamide arm achieved successful decongestion and it persisted until discharge

Mullens W. N Engl J Med 2022;387:1185

Mullens W. N Engl J Med 2022;387:1185

CAI and Urine Volume-Sodium

Urine Output

Urine Sodium Concentration

Day-1

Acetazolamide; higher urine volume and urine sodium concentration

Kazory A. CJASN 2023

What is in the Pipeline?

Mechanism and Effects of Manipulating Chloride Homeostasis in Acute Heart Failure (NCT03446651)

- Acute and Chronic Heart Failure
- Single-Center (Yale), randomized, double-blind, placebo-controlled trial
- patients are randomized to 7 days of therapy with either 115 mmol/day of lysine chloride or placebo.
- Primary Endpoint: Change in Blood Volume (Volumex)

CONCLUSION

- The current discrepancies/confusion regarding the sodium-centric approach to HF could be in part due to ignoring chloride.

- Chloride may be a stronger prognostic marker in all HF syndromes compared with sodium (CHF, ADHF, HFrEF, HFpEF) [utility in risk prediction models of HF]

- Lingering congestion, low urine sodium, diuretic resistance, and low serum chloride levels; why not a touch of acetazolamide?

Jointly Provided by

UC San Diego SCHOOL OF MEDICINE and CRRT, INC.

MARCH 12-15, 2024 MANCHESTER GRAND HYATT SAN DIEGO, CALIFORNIA

Thank You...

E-mail: Amir.Kazory@medicine.ufl.edu X (Twitter): @AmirKazory